Enzymes may be simple proteins, or complex enzymes.

A complex enzyme contains a non-protein part, called as prosthetic group (co-enzymes).

Coenzymes are heat stable low molecular weight organic compound. The combined form of protein and the co-enzyme are called as holo-enzyme. The heat labile or unstable part of the holo-enzyme is called as apo-enzyme. The apo-enzyme gives necessary three dimensional structures required for the enzymatic chemical reaction.

Co-enzymes are very essential for the biological activities of the enzyme.

Co-enzymes combine loosely with apo-enzyme and are released easily by dialysis. Most of the co-enzymes are derivatives of vitamin B complex

Related Questions Enzymes


The measurement of enzymes level in serum is applied in diagnostic application

Pancreatic Enzymes

Acute pancreatitis is an inflammatory process where auto digestion of gland was noticed with activation of the certain pancreatic enzymes. Enzymes which involves in pancreatic destruction includes α-amylase, lipase etc.,

1.  α-amylase (AMYs) are calcium dependent hydrolyase class  of metaloenzyme that catalyzes the hydrolysis of 1, 4- α-glycosidic linkages in polysaccharides. The normal values of amylase is in range of 28-100 U/L. Marked increase of 5 to 10 times the upper reference limit (URL) in AMYs activity indicates acute pancreatitis and severe glomerular impairment.

2.  Lipase is single chain glycoprotein. Bile salts and a cofactor called colipase are required for full catalytic activity of lipase. Colipase is secreted by pancreas. Increase in plasma lipase activity indicates acute pancreatitis and carcinoma of the pancreas.

Liver Enzymes

Markers of Hepatocellular Damage

1.  Aspartate transaminase (AST) Aspartate transaminase is present in high concentrations in cells of cardiac and skeletal muscle, liver, kidney and erythrocytes. Damage to any of these tissues may increase plasma AST levels.

The normal value of AST for male is <35 U/ L and for female it is <31 U/L.

2.  Alanine transaminase (ALT) Alanine transaminase is present at high concentrations in liver and to a lesser extent, in skeletal muscle, kidney and heart. Thus in case of liver damage increase in both AST and ALT were noticed. While in myocardial infarction AST is increased with little or no increase in ALT.

The normal value of ALT is <45 U/L and <34 U/L for male and female respectively

Markers of cholestasis

1.  Alkaline phosphatases

Alkaline phosphatases are a group of enzymes that hydrolyse organic phosphates at high pH. They are present in osteoblasts of bone, the cells of the hepatobiliary tract, intestinal wall, renal tubules and placenta.

Gamma-glutamyl-transferase (GGT) Gamma-glutamyl-transferase catalyzes the transfere of the γ–glutamyl group from peptides. The activity of GGT is higher in men than in women. In male the normal value of GGT activity is <55 U/L and for female it is <38 U/L.

2.  Glutamate dehydrogenase (GLD) Glutamate dehydrogenase is a mitochondrial enzyme found in liver, heart muscle and kidneys.

Muscle Enzymes

1.  Creatine Kinase Creatine kinase (CK) is most abundant in cells of brain, cardiac and skeletal.

2.  Lactate Dehydrogenase

Lactate dehydrogenase (LD) catalyses the reversible interconversion of lactate and pyruvate.

Enzymes are protein catalyst produced by a cell and responsible ‘for the high rate’ and specificity of one or more intracellular or extracellular biochemical reactions.

Enzymes are biological catalysts responsible for supporting almost all of the chemical reactions that maintain animal homeostasis. Enzyme reactions are always reversible.

The substance, upon which an enzyme acts, is called as substrate. Enzymes are involved in conversion of substrate into product.

Almost all enzymes are globular proteins consisting either of a single polypeptide or of two or more polypeptides held together (in quaternary structure) by non-covalent bonds. Enzymes do nothing but speed up the rates at which the equilibrium positions of reversible reactions are attained.

 In terms of thermodynamics, enzymes reduce the activation energies of reactions, enabling them to occur much more readily at low temperatures - essential for biological systems.

The Effects of Enzyme Inhibitors

Enzymes can be inhibited

  • competitively, when the substrate and inhibitor compete for binding to the same active site or
  • noncompetitively, when the inhibitor binds somewhere else on the enzyme molecule reducing its efficiency.

The distinction can be determined by plotting enzyme activity with and without the inhibitor present.

Competitive Inhibition

In the presence of a competitive inhibitor, it takes a higher substrate concentration to achieve the same velocities that were reached in its absence. So while Vmax can still be reached if sufficient substrate is available, one-half Vmax requires a higher [S] than before and thus Km is larger.

Noncompetitive Inhibition

With noncompetitive inhibition, enzyme molecules that have been bound by the inhibitor are taken out

  • enzyme rate (velocity) is reduced for all values of [S], including
  • Vmax and one-half Vmax but
  • Km remains unchanged because the active site of those enzyme molecules that have not been inhibited is unchanged.

Role of Coenzymes

The functional role of coenzymes is to act as transporters of chemical groups from one reactant to another.

Ex. The hydride ion (H+ + 2e-) carried by NAD or the mole of hydrogen carried by FAD;

The amine (-NH2) carried by pyridoxal phosphate

The basic characteristics of enzymes includes

(i) Almost all the enzymes are proteins and they follow the physical and chemical reactions of proteins (ii) Enzymes are sensitive and labile to heat

(iii) Enzymes are water soluble

(iv) Enzymes could be precipitated by protein precipitating agents such as ammonium sulfate and trichloroacetic acid.