Total Topics :1155



The organ of Corti with its sound-sensitive hair cells and basilar membrane are important parts of the sound transducing system for hearing. Mechanical vibrations of the basilar membrane generate membrane potentials in the hair cells which produce impulse patterns in the cochlear portion of the vestibulocochlear nerve (VIII)

Special somatic nerve fibers of cranial nerve VIII relay impulses from the sound receptors (hair cells) in the cochlear nuclei of the brainstem

These are bipolar neurons with cell bodies located in the spiral ganglia of the cochlea.

Vestibular System

The vestibulocochlear nerve serves two quite different functions.

The cochlear portion, conducts sound information to the brain,

The vestibular portion conducts proprioceptive information.

It is the central neural pathways

Special somatic afferent fibers from the hair cells of the macula utriculi and macula sacculi conduct information into the vestibular nuclei on the ipsilateral side of the pons and medulla.

These are bipolar neurons with cell bodies located in the vestibular ganglion.

 Some of the fibers project directly into the ipsilateral cerebellum to terminate in the uvula, flocculus, and nodulus, but most enter the vestibular nuclei and synapse there.


The visual system receptors are the rods and cones of the retina.

Special somatic afferent fibers of the optic nerve (II) conduct visual signals into the brain

Fibers from the lateral (temporal) retina of either eye terminate in the lateral geniculate body on the same side of the brain as that eye.

SSA II fibers from the medial (nasal) retina of each eye cross over in the optic chiasm to terminate in the contralateral lateral geniculate body.

Area 17 is the primary visual area, which receives initial visual signals.

Neurons from this area project into the adjacent occipital cortex (areas 18 and 19) which is known as the secondary visual area. It is here that the visual signal is fully evaluated.

The visual reflex pathway involving the pupillary light reflex - in which the pupils constrict when a light is shined into the eyes and dilate when the light is removed.

Some SSA II fibers leave the optic tract before reaching the lateral geniculates, terminating in the superior colliculi instead.

From here, short neurons project to the Edinger­Westphal nucleus (an accessory nucleus of III) in the midbrain, which serves as the origin of the preganglionic parasympathetic fibers of the oculomotor nerve (GVE III).

The GVE III fibers in turn project to the ciliary ganglia, from which arise the postganglionic fibers to the sphincter muscles of the iris, which constrict the pupils.